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ABSTRACT 

In calculating hydrodynamic flows by finite difference methods it is con- 
venient to introduce artificial viscosity terms to smear out shocks, rather than 
to allow discontinuities in the physical variables. However, when these 
shocks cross a change in mesh or material, errors occur because of the tran- 
sient nature of the shock. The object of this paper is to investigate the nature 
of these errors and to attempt to eliminate them. At a material interface it is 
found that the errors can be considerably reduced either by a suitable choice 
of mesh for the second material or by modifying the definition of the artificial 
viscosity term. 

I. INTRODUCTION 

When calculating hydrodynamic flows by finite difference methods it 
is often more convenient to introduce an artificial viscosity term to smear 
shocks out over a finite distance than to introduce discontinuities in the 
physical variables [l]. While artificial viscosity terms can be adjusted 
to give the correct entropy rise when representing steady shock waves, 
there will be an error when representing transient behavior, i.e., when 
shocks cross interfaces or when the finite difference mesh varies [2]. 
To calculate hydrodynamic flows accurately when there is only one 
space variable it is always possible to reduce these errors by increasing 
the number of meshes. For two-dimensional flows, however, the num- 
ber of meshes is strictly limited by computer time and storage. Any 
effort to increase the accuracy of two-dimensional problems must come 
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through an understanding of the one-dimensional case. The object 
of this paper is to investigate and attempt to correct the errors that 
arise when a steady-state, one-dimensional shock represented by this 
artificial viscosity term crosses a change in mesh or material or both. 
These shocks are referred to as “viscous shocks,” although this is purely 
a numerical representation and not a physical reality. 

II. THE BASIC EQUATIONS 

In a coordinate system moving with the steady shock speed U the 
system is stationary and the one-dimensional hydrodynamic equations 
may be written in integrated form as 

ew = constant = m, (1) 

p + q + mw = constant, 

m(e + 4 w2) + (p + q)w = constant, 

(2) 

(3) 

where w  is the velocity relative to the moving coordinate system, and 
p, e, ,c, and q represent the pressure, internal energy, density, and the 
artificial viscosity term, respectively. The latter may take many forms, 
although for the present we will confine our attentions to the well-known 
von-Neumann q [I] defined by 

41 = 

1 

e2 au 2 au 
L2p ax 0 - ax co, 

0 g >o, 

(4) 

where eO is a reference density for the materiale, x is an Eulerian distance 
coordinate, and L is a constant having the dimensions of length. For 
finite difference methods we take L = b Ax, where b is a nondimensional 
constant and Ax is the mesh size. 

Throughout this paper we shall use an equation of state of the so- 
called water type 

e= @$-B) 

(n - l>e’ 
(5) 

where B and n are constants for any given material. For aluminium and 
uranium the values for B and n which give the best fit to experimental 
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data over the range O-l Mb are 1.067, 1.667, and 1.3325, 1.1, respec- 
tively. Eliminating p, w, and e from Eqs. (1) to (3) and (5) gives 

q=m2 c+ 
QlY ( 1 (1 - Y) (Y - J.1, (6) 

where @I and ez are the constant densities far shead and behind the 
shock, y = el/e and I = el/ez. Since the derivation of Eq. (6) is in- 
dependent of the form of q assumed in Eq. (4), we can see from Eq. (6) 
that the maximum value of q for a steady shock is 

rn2 
4 Inax = - el ( ) 

F (1 - fl)2, 

which is independent of the form of q and will be the same for other 
forms. 

Substituting (4) into (6) and integrating gives 

1fJ y=----- 
2 + 

1-A 
- cos & {[(l - y) (y - GP’” 

2 

+ (Tr” (y)}, (8) 

where x0 is a reference point and we have taken e. = el. With this 
form of q the shock is spread out over a distance 

X=J+lnL 2 l/2 
2 i 1 n+l ’ 

and the time for a complete wave to pass a point is 

T=a+lnL 2 1’2. 
-----ii7 n-j-1 2 ( ) ’ (10) 

i.e., T is the time taken for the material at any point to change from 
its initial to its final state through the passage of the shock wave. 

III. THE DENSITY ERROR AT AN INTERFACE 

The velocity of a shock varies from one material to another, and so 
to a lesser degree does the shock width; therefore, the time taken for 
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a shock to pass a given point will differ from material to material. Hence, 
the shock transmitted across an interface will have, in general, the wrong 
initial width and speed producing wrong values of &1/8x. The same 
is true of the rellected shock which will have different properties from 
that of the incident shock. 

For an ideal gas, i.e., one whose temperature T satisfies the equation 

pv = RT, 

where R is the universal gas constant and v is the specific volume, the 
entropy change may be calculated from 

1 dS ---= 
R dv - 4/P? 

where S is the entropy; unless q has the correct form the material will 
not receive the correct entropy change. If a mesh is at a different entropy 
from its neighbor, then for equal pressures it must have a different 
density, and this difference will always exist: the pressure differences 
of course will disperse with sonic velocities. Since the entropy error 
may be positive or negative the density error may also be positive or 
negative. 

In a steady state a shock will take the same time to pass any particular 
point, although this time will vary for different meshes, materials, and 
shock strengths. Now when a shock crosses a change in mesh or ma- 
terial, it is while it is changing from one steady state to another that the 
material receives the wrong entropy increment: this error should be 
considerably reduced by making the time T for the shock to pass a fixed 
point the same for both sides of the interface. Writing L = b Ax and 
matching T for the incident and transmitted shocks, we have 

where the subscripts A and B refer to the incident and transmitted shock 
side of the interface, respectively. This equation gives the criterion for 
matching the meshes on two sides of an interface. Given the values of 
II for the two materials and the speed and compression ratios of the 
two shocks, this equation determines the correct mesh for the transmitted 
shock side of the interafce if the errors caused by the transient shock 
are to be minimized. From a practical point of view it is unfortunate 
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that Eq. (13) involves the compression ratio and speed of the transmitted 
shock, but the validity of this formula, and the sensitivity of the matching 
as the parameters vary, has been investigated by some numerical ex- 
periments which are described in the next section. 

In some circumstances there will also be a reflected shock which leaves 
behind several meshes near the interface at the wrong density. Although 
the procedure described here could correct the density profile in the 
second material it cannot be expected to affect the error caused by the 
reflected shock. However, this error will be smaller than for the trans- 
mitted shock since the entropy jump 5S/S is smaller. 

IV. SOME NUMERICAL RESULTS 

Various numerical tests have been carried out using a one-dimensional 
hydrodynamic finite difference computer code primarily to investigate 
the nature and magnitude of the errors occurring when a viscous shock 
crosses an interface and secondly to test the theory of the preceding 
section. The value of b in general use is about 1.6, and this spreads the 
shock over about three meshes. Much smaller values of b lead to large 
oscillations behind the shock and much larger values spread the shock 
out over many meshes with a lack of definition of the shock position. 
The inclusion of a von-Neumann viscosity term reduces the time step 
of most difference methods by a factor proportional to l/b, and this is 
a deterrent to taking a value of b larger than is really necessary to re- 
present the shock satisfactorily. However, in order to magnify the er- 
rors introduced by artificial viscosity terms and to keep arbitrary oscil- 
lations to a minimum, a larger value of b (viz. b = 8) has been used 
for most of the runs described here. 

Figures la-d show the density profiles at various times that result 
when a von-Neumann shock wave of 5 Mb crosses a sudden change of 
mesh of l-5 cm in aluminium: a constant value of b = 8 has been used. 
It can be seen that there is a small reflected perturbation which travels 
away from the interface at the local speed of sound. The dip at the in- 
terface in the density profile at 150 psec is permanent. 

Since there is no change of material or shock velocity at the inter- 
face, Eq. (13) reduces to 

bA AxA = bB AxB, 04) 



6 CAMERON 

(al 

I 

tb) 

35 t 25PSCC 

25 2.5 

0 80 160 x(cm) 0 80 160 x(m) 

25w ‘60 x(m) 
251 

0 80 160 XW 

FIG. 1. Density profiles of a steady-state viscous shock (p2 = f Mb) as it crosses 
a change in mesh size. The value of b is kept constant. 

and we can only match at the interface by altering b. In many cases this 
is not practical when dxB/dxA is as large as 5; but, because our initial 
value of b is so large, we can reduce b to 1.6 in the second material without 
affecting the representation of the shock. Figure 2-a shows the results 
for such a run; it can be seen that the reflected perturbation and the 
“dip” at the interface wave been eliminated. The oscillations behind 
shock front arise from the reduced value of b. 

Reducing b is often not practicable and an alternative is to change the 
mesh gradually rather than suddenly. Figure 2-b shows the resulting 
density profile of a run in which the mesh was changed from 1.0 to 5.0 
cm in 8 steps. The amplitude of the reflected perturbation is reduced 
though its width is increased: a similar observation may be applied to 
the “dip” at the interface, although the net error in J pdx is about the 
same in the two cases. We conclude that the continuous variation of 
the mesh does not eliminate the error but only spreads it out. 
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FIG. 2. Density profiles after a steady-state viscous shock (p8 = + Mb) has crossed 
a change in mesh size. (a) Abrupt change, but b Ax = 8 kept constant; (b) gradual 
change in mesh but b kept constant. 

A series of runs has been carried out in .which a shock crosses from 
aluminium to uranium where initially the materials are considered to 
be at their normal density: there will be a transmitted and reflected 
shock. Figures 3-a and 3-b show some typical nondimensional density 
profiles for two runs with the same mesh size but with two different 
values for b, viz. 1.6 and 8.0; it may be seen that the maximum error 
is about the same in both cases but that more meshes are affected for 
the larger value of b. This is what we would expect as the shock is 
spread out further for the larger value of b. Although the magnitude 
of the error at the interface is almost independent of b, it increases as 
the shock strength increases. A full quantitative investigation has not 
been carried out, but Fig. 3-a and 3-b show the density profile for the 
transmitted and reflected shock when the pressure driving the shock 
is 1 Mb. Figure 4 shows various density profiles most of which are re- 
ferred to later but, for comparison with Figs. 3-a and 3-b, the continuous 
line in Fig. 4-a shows the density profile when the pressure driving the 
shock is 4 Mb and b = 8. 

A series of runs was carried out with b = 8, a shock pressure of 
i Mb, and a constant mesh in the aluminium of 1 cm but with various 
mesh sizes in the uranium. The data for the shocks involved is 

b=8 

Incident 
shock 

X, = 16.7 dx TA = 21.2 Ax q- = .034 
TA/TB = 0.58 
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Transmitted 
shock x, = 14.1 Ax TB = 36.6 .h qnlax -:- .0805 

T41Tc m-7 0.81 

Reflected 
shock 

x, = 17.7 nx Tc = 26.0 .1x qrnax == .0074 

The value of 0.58 given here for TA/TB has been calculated using the 
theory of the previous section as given by Eq. (13); it tells us that the 
ratio of the mesh in the uranium to the mesh in the aluminium, v, 
should be 0.58 in order to make TAITB = 1 and reduce the density 
errors to a minimum. 

I. 
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FIG. 3. Normalized density profiles after a steady-state viscous shock (pz = 1 Mb) 
has crossed an Al-U interface. (a) b = 1.6; (b) b = 8. e0 is the correct value of the 
density for the steady-state shock in the particular material considered. 
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FIG. 4. Normalized density profiles after a steady-state viscous shock (pz = f  Mb) 
has crossed an Al-U interface. Continuous curves refer to the von-Neumann q term; 
large broken curves to the Landshoff q [Eq. (20)]. (a) Mesh unchanged; (b) optimum 
mesh ratio; (c) smaller mesh ratio than optimum. 

The results of the runs are shown in Figs. 4-6. In Fig. 4 the continuous 
lines show the density profiles for three values of v for the von-Neu- 
mann q; the broken lines are profiles for different tyeps of q considered 
later. Figure 5 shows how rapidly the shock reaches its new state in 
the uranium for various values of I*; the maximum q in the uranium 
is plotted against the distance moved by the interface. Theory indicates 
that v should be 0.58, and Fig. 5 shows that the transmitted shock settles 
down to its new steady state most rapidly for this value of 1’. The broken 
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FIG. 5. Maxima of von-Neumann q for the transmitted shock after a steady- 
state viscous shock (pa = ) Mb) has crossed an AI-U interface. 

lines in this figure show the effect of using a smaller value of b. The 
density profile for Y = 0.58 shown in Fig. 4-b has only a small error in 
the uranium. For the shock driven by a pressure of 1 Mb considered 
earlier, v, is 0.63; this is not significantly different from 0.58, and the 
increase in the error for the stronger shock is because the shocks are 
stronger and not because of any difference in the nature of the inter- 
action at the interface. 
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It can be seen from Fig. 5 that a small variation in Y, increases the 
distance required for the shock to settle to its new state by quite a large 
factor, and this increase is naturally reflected in an increase in the num- 
ber of cells at the wrong density. These results are shown in Figs. 6-a 
and 6-b, which emphasize just how good the matching needs to be to 
obtain the best possible result. Figure 6-b shows how far the shock 
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FIG. 6. Dependence on v of errors in the transmitted shock after a steady-state 
cous shock (pz = 4 Mb) has crossed from Al to U. 

vis- 

travels after first meeting the interface before it reaches its new steady 
state; we can see that once v varies from v, by more than about 25% the 
distance required for the shock to reach its new state varies only slowly; 
the volume at the wrong density, however, continues to rise. Investiga- 
tion of the results of this series of runs and others shows that the maxi- 
mum error in the density increases linearly as v/v, varies from 1.0, 
the exact rate depending on the shocks involved. 

V. A VON-NEUMANN q WITH A VARIABLE b 

We have seen how to correct the error caused by the transmitted 
shock, but this does not correct the error caused by the reflected shock. 
This error could be corrected if we introduce a variable value for the 
viscous constant b, i.e., if we write kb, for b, where 

2 n + 1 
( 1 

1/z __ - 
k=l+lU 2 ’ (15) 
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then 

and 

X = rrb,UAx (16) 

T = nb,Ax, (17) 

an thus, without altering nx, we can keep T constant throughout. The 
success of this method depends on finding the correct values of U and 
il. This is easy for a single shock but not when multiple interactions and 
shocks are involved. 

If we denote the constant states ahead and behind of the shock front 
by subscripts 1 and 2 we have from Eqs. (1) to (3) and Eq. (5) that 

!!+&, f b + !+$“, (18) 

2(b + vd 
(19) 

(n+ 1) b+qp,)++,i’ 

A simple way of approximating to U and 3, at any point is to use Eqs. 
(18) and (19) where pz, pl, e2, and el are evaluated from the values 
several points shead and behind of the point being calculated. Figure 7 
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FIG. 7. Normalized density profile after a steady-state viscous shock (pz = -5 Mb) 
with a variable value of b has crossed from Al to U. 

shows the results of a run with such a q; they are not perfect but could 
probably be improved by using more accurate, but necessarily more 
complicated, methods of evaluating U and 1 at the mesh points. 
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VI. THE LANDSHOFF q TERM 

Another form of q that is sometimes used in one that is linear instead 
of quadratic in du/dx. This is a form first used by Landshoff [3], and 
in terms of the Eulerian derivative it may be written 

cl2 = 

1 

du 
L eoc dx I I g <o, 

(20) 
0 

du 

8.x > Oy 

where c is the velocity of sound. With this form of q the shock is spread 
out over a distance X, where 

As y ---f 1 or n it is obvious that this integral diverges giving an infinite 
shock width X; however, we can modify the limits of the integration 
to 3, + (1 - J.)/lOO and 1 - (1 - h)/lOO to give a finite value for X. 
This modified definition of the shock width is found to give satisfactory 
results over the complete range of h. 

The integral in Eq. (21) cannot be evaluated in closed form and must 
be calculated numerically. This has been done for various values of n 
and il and the results are shown in Fig. 8. If we have a strong shock and 
a perfect gas equation of state [B = 0 in Eq. (5)], then 

(22) 

and X/L only depends on n or A. This dependence is shown in Fig. 8 
as the small broken curve labelled strong “ideal” shock. The values of 
X/L are nondimensional, but because of the different range of values 
it is not practical to show the comparison between X/L for the Landshoff 
and von-Neumann q in the same figure. However, Fig. 9 shows values 
of X/L for the von-Neumann q, and also a non-dimensional shock 
transit time T/L’ for a modified von-Neumann q which is considered 
in the next section (L’ is a modified definition of L). The values of 
X/L are calculated from Eq. (9) and are shown as the large broken line; 
as before, the small broken line shows the values of X/L for a strong 
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shock with a perfect gas equation of state. Comparing the two sets of 
curves it can be seen that X/L varies much more for the Landshoff q 
than for the von-Neumann q, especially as A-+ 1. Now for matching 
the mesh in two materials it has been shown that we would like the 
time T to remain constant, but for practical reasons concerning the 
definition of the shock it is also desirable that X should not vary too 
much. This is therefore a disadvantage of the Landshoff q. 

FIG. 8. Nondimensional shock width for the Landshoff (linear) q. 

Using the shock widths shown in Fig. 8 it is possible to obtain the 
critical value of v for a given shock and interface. We consider the same 
shock of Q Mb crossing from aluminium to uranium, and choose b 
such that the shock is spread over the same distance in the aluminium 
as the von-Neumann q spreads it out with b = 8. We then have the 
following data for the three shocks: 

b = 0.835 
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Incident shock X- = 16.7 Ax TA = 24.8 Ax 
TAITB = 0.63 

Transmitted shock X’ = 14.7 Ax 7" = 38.6 Ax 
T,/T, = 0.38 

Reflected shock x, = 45.5 Ax T, = 66.5 Ax 

The critical value of Y is therefore seen to be 0.63. 

FIG. 9. Nondimensional shock width and shock transit time for the von-Neumann 
q and modified von-Neumann q, respectively. 



16 CAMERON 

FIG. 10. Maxima of Landshoff q for the transmitted shock after a steady-state 
viscous shock (pz = # Mb) has crossed an AI-U interface. 

Figure 10 shows the distance required for the shock to reach its new 
steady state for various values of v; it may be seen that the best curve 
is the one corresponding to v = 0.63; that this is the best choice of v 
is confirmed by the density profiles. The curves are different from those 
obtained for the von-Neumann 4 in that, for a’ > vC, instead of a rapid 
overshoot there is a steady rise to a maximum followed by a longish 
tail. This longish tail also exists for Y < vC. Some density profiles for 
q2 are shown as the large broken lines in Fig. 4: for the same value of v 
the errors do not seem quite so large as for ql. Figure 11 shows the 
volume of material at the wrong density for this type of 4, and comparing 
this figure with Fig. 6-1 it can be seen that the volume at the wrong 
density does not seem to be quite so sensitive to the value of v for the 
Landshoff 4 as for the von-Neumann q. 
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It has not been found possible to reduce the density errors by taking 
linear combinations of the two forms of q (X naturally being kept con- 
stant). There is the possibility that the error could be reduced by taking 
a form of q proportional to (&/ax) liz; however the shock profiles 
for such a q appear to have long tails, with a relatively rapid change near 
the center. This does not produce a very satisfactory profile, and although 
the trouble could probably be reduced by modifying the definition of 

Vol ar wrong 
dcnsit (/unit 
width Ccc) 

IS- 

LANDSHOFF q 

Al +U 

lo1 ,y 

5 R =LjMb 
k = ,.n 

0 
0 04 0.8 r-2 

FIG. 11. Dependence on Y of errors in the transmitted shock after a steady-state 
viscous shock (pz = 3 Mb) has crossed from Al to U. 

the shock width and cutting q off below a certain value, this form has 
not been pursued. 

VII. FORMS OF q WITH AN EXTRAVELOCITY OF SOUND TERM 

It has been shown that in order to eliminate the errors caused when 
a viscous shock crosses an interface, it is necessary to match T on both 
sides of the interface. If T/b Ax was a constant independent of ii, n, and 
U, then matching would be straightforward, both for transmitted and 
reflected shocks without changing the mesh at an interface. A slight 
variation in T leads to a large increase in the number of meshes at the 
wrong density, although the maximum error is proportional to the error 
in T. Thus, although exact matching is the ideal, the better the match, 
the less the net error. 

For practical examples, 0.6 < 1 < 1 and 1 < II < 4; therefore 
0.8 < (1 + 1)/2 < 1.0, and 0.6 < [2/(n + 1)]1/2 < 1: these changes are 
much less than possible variations in U, which can fluctuate widely 
from material to material. It is therefore plausible that for a constant 
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mesh the net error could be reduced if the definition of q was modified 
to include the shock speed U. For the general case, however, this is not 
practical and a compromise is to introduce the sound speed, c, which 
is closely related to U by 

(23) 

This formula assumes that the material ahead of the shock is at rest; 
if this is not so U is replaced by wl, the velocity relative to the shock 
front of the material ahead of the shock. We therefore define a q which, 
in terms of the Eulerian derivative, may be written as 

(24) 

b’ is still a constant but with the dimensions of (l/velocity). With this 
definition we have 

i 
n-l 

) 

l/2 

Y A-my2 

T/L’ = ,: [(l - y)(y - ;i)]l/” dy, (25) 

where L’ = b’ dx. The integral may be evaluated, and the large broken 
lines in Fig. 9 show values of T/L’ as a function I. and IZ: the small bro- 
ken line again represents the curve obtained for a perfect gas and strong 
shocks. Given L and iz for the incident and transmitted shocks this 
figure shows directly how good or bad the matching will be if the same 
mesh is used for both materials; alternatively, of course, it shows what 
the correct value of v should be for perfect matching. For very small 
values of n, T rises rapidly, and for a constant mesh we would therefore 
expect poor matching when one of the materials is characterized by a 
low value of IZ. 

For the example considered earlier, again keeping X/dx constant at 
16.7 in the aluminium, we have 

b = 13.1 TA/TB = 1.17 and TA/T, = 0.87. 

To compare this q with q1 and q2, the appropriate density profile for 
v = 1 is shown as the dotted line labelled “modified ql” in Fig. 4-a. 
As would be expected from the value of TA/Tc the error in the uranium 
has been considerably reduced, although the error in the aluminium is 
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about the same in spite of the improvement to T,/T,. Of course, as r 
varies from 1.0 the errors will increase as before. 

The improvement obtained by the use of q3 instead of q1 arises from 
the fact that the variation of shock width X is increased by the use of 
the modified form. This is satisfactory provided that we do not violate 
the practical conditions inherent in the use of an artificial viscosity, 
that is, X must be greater than about 3 meshes if the oscillations behind 
the shock are to be small and not so large that details of the flow pattern 
are lost. Although it depends on the type of problem being solved, 
changes in the shock width of the order two, as arise for this type of 
viscosity term, are probably satisfactory provided that b is chosen suf- 
ficiently large enough to represent all the shocks correctly. 

For strong shocks and an ideal equation of state it may be noted 
that T/L’ is just a function of n; thus, if this function is included in the 
definition of q, T/L’ is a constant under these special conditions. 

There is an analogous modification to the Landshoff 4 for which we 
may derive the following data: 

b= 1.2 T,IT, = 1.37 and T,/T, = 0.4. 

Compared with the ordinary Landshoff q there is an improvement in 
the density profile in the uranium, though not such a significant one as 
was obtained by modifying the von-Neumann q: this is consistent with 
the values of TA/TB obtained. The values of T/L’ for this form of q are 
very similar to the values of X/L obtained for the ordinary Landshoff 
4 and have not been shown here. Because of the large variations in T 
and the even larger variations in X, the modified Landshoff q is probably 
not a satisfactory form of 4. 

VIII. CONCLUSIONS 

From the results and graphs obtained in the preceding sections we 
may draw the following conclusions about the effect of using viscous 
shocks in finite difference methods. When a viscous shock crosses an 
interface the density of the material close to the interface on the trans- 
mitted shock side will be left in error unless the ratio of the meshes on 
either side of the interface has a certain value 1~~ which depends on the 
structure of the shock and its speed. If v > U, the density of this material 
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will be too low and vice versa. As v/v, varies from 1.0 the number of 
cells at the wrong density increases rapidly, while the maximum error 
in density increases linearly. If there is also a reflected shock, then the 
final density of the material on the incident shock side of the interface 
will also be incorrect. This error can only be corrected by introducing 
a variable viscous constant, although the use of this method is limited 
since the values of b must be within a certain range. 

At a change in material it would appear that the choice of mesh is 
not so critical for a Landshoff q as it is for a von-Neumann q. However, 
against this must be weighed the disadvantage of an increased shock 
width for values of 1. close to 1.0. The modified Landshoff q term is 
not to be recommended because of large variations in the shock width: 
the modified von-Neumann q is more satisfactory from this point of 
view and, provided the moderate variations in shock width can be toler- 
ated, has proved to be the best simple form of q tried. 
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